High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance
نویسندگان
چکیده
منابع مشابه
High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance.
Pseudocapacitance is commonly associated with surface or near-surface reversible redox reactions, as observed with RuO2·xH2O in an acidic electrolyte. However, we recently demonstrated that a pseudocapacitive mechanism occurs when lithium ions are inserted into mesoporous and nanocrystal films of orthorhombic Nb2O5 (T-Nb2O5; refs 1,2). Here, we quantify the kinetics of charge storage in T-Nb2O5...
متن کاملNanoscale spinel LiFeTiO4 for intercalation pseudocapacitive Li(+) storage.
Intercalation pseudocapacitive Li(+) storage has been recognized recently in metal oxide materials, wherein Li(+) intercalation into the lattice is not solid-state diffusion-limited. This may bridge the performance gap between electrochemical capacitors and battery materials. To date, only a few materials with desired crystal structure and with well-defined nanoarchitectures have been found to ...
متن کامل1 Electrochemical Energy Storage
The problems related to the differed time between production and use of electrical energy produced by renewable sources makes storage systems an integral part of Renewable Energy Sources (RES), especially for stand-alone systems. Furthermore, for grid-connected systems, the stability of the electric system and the quality and stability of the delivered voltage will result in a high quality syst...
متن کاملDesigning high-performance electrochemical energy-storage nanoarchitectures to balance rate and capacity.
The impressive specific capacitance and high-rate performance reported for many nanometric charge-storing films on planar substrates cannot impact a technology space beyond microdevices unless such performance translates into a macroscale form factor. In this report, we explore how the nanoscale-to-macroscale properties of the electrode architecture (pore size/distribution, void volume, thickne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Materials
سال: 2013
ISSN: 1476-1122,1476-4660
DOI: 10.1038/nmat3601